Processing math: 100%

sl(2)-subalgebras of sl(6), type A15

sl(6), type A15
Structure constants and notation.
Root subalgebras / root subsystems.
sl(2)-subalgebras.
Semisimple subalgebras.

Page generated by the calculator project.

Number of sl(2) subalgebras: 10.
Let h be in the Cartan subalgebra. Let α1,...,αn be simple roots with respect to h. Then the h-characteristic, as defined by E. Dynkin, is the n-tuple (α1(h),...,αn(h)).

The actual realization of h. The coordinates of h are given with respect to the fixed original simple basis. Note that the h-characteristic is computed using a possibly different simple basis, more precisely, with respect to any h-positive simple basis.
A regular semisimple subalgebra might contain an sl(2) such that the sl(2) has no centralizer in the regular semisimple subalgebra, but the regular semisimple subalgebra might fail to be minimal containing. This happens when another minimal containing regular semisimple subalgebra of equal rank nests as a root subalgebra in the containing SA. See Dynkin, Semisimple Lie subalgebras of semisimple Lie algebras, remark before Theorem 10.4.
The sl(2) submodules of the ambient Lie algebra are parametrized by their highest weight with respect to the Cartan element h of sl(2). In turn, the highest weight is a positive integer multiple of the fundamental highest weight ψ. Vlψ is l+1-dimensional.


Type + realization linkh-CharacteristicRealization of hsl(2)-module decomposition of the ambient Lie algebra
ψ= the fundamental sl(2)-weight.
Centralizer dimensionType of semisimple part of centralizer, if knownThe square of the length of the weight dual to h.Dynkin index Minimal containing regular semisimple SAsContaining regular semisimple SAs in which the sl(2) has no centralizer
A351(2, 2, 2, 2, 2)(5, 8, 9, 8, 5)V10ψ+V8ψ+V6ψ+V4ψ+V2ψ
0 07035A^{1}_5; A^{1}_5;
A201(2, 2, 0, 2, 2)(4, 6, 6, 6, 4)V8ψ+V6ψ+3V4ψ+V2ψ+V0
1 04020A^{1}_4; A^{1}_4;
A111(2, 0, 2, 0, 2)(3, 4, 5, 4, 3)V6ψ+3V4ψ+4V2ψ+V0
1 02211A^{1}_3+A^{1}_1; A^{1}_3+A^{1}_1;
A101(2, 1, 0, 1, 2)(3, 4, 4, 4, 3)V6ψ+V4ψ+4V3ψ+V2ψ+4V0
4 A112010A^{1}_3; A^{1}_3;
A81(0, 2, 0, 2, 0)(2, 4, 4, 4, 2)4V4ψ+4V2ψ+3V0
3 not computed1682A^{1}_2; 2A^{1}_2;
A51(1, 1, 0, 1, 1)(2, 3, 3, 3, 2)V4ψ+2V3ψ+4V2ψ+4Vψ+2V0
2 0105A^{1}_2+A^{1}_1; A^{1}_2+A^{1}_1;
A41(2, 0, 0, 0, 2)(2, 2, 2, 2, 2)V4ψ+7V2ψ+9V0
9 A1284A^{1}_2; A^{1}_2;
A31(0, 0, 2, 0, 0)(1, 2, 3, 2, 1)9V2ψ+8V0
8 not computed633A^{1}_1; 3A^{1}_1;
A21(0, 1, 0, 1, 0)(1, 2, 2, 2, 1)4V2ψ+8Vψ+7V0
7 not computed422A^{1}_1; 2A^{1}_1;
A11(1, 0, 0, 0, 1)(1, 1, 1, 1, 1)V2ψ+8Vψ+16V0
16 A1321A^{1}_1; A^{1}_1;


Length longest root ambient algebra squared/4= 1/2

Given a root subsystem P, and a root subsubsystem P_0, in (10.2) of Semisimple subalgebras of semisimple Lie algebras, E. Dynkin defines a numerical constant e(P, P_0) (which we call Dynkin epsilon).
In Theorem 10.3, Dynkin proves that if an sl(2) is an S-subalgebra in the root subalgebra generated by P, such that it has characteristic 2 for all simple roots of P lying in P_0, then e(P, P_0)= 0. It turns out by direct computation that, in the current case of A^{1}_5, e(P,P_0)= 0 implies that an S-sl(2) subalgebra of the root subalgebra generated by P with characteristic with 2's in the simple roots of P_0 always exists. Note that Theorem 10.3 is stated in one direction only.

h-characteristic: (2, 2, 2, 2, 2)
Length of the weight dual to h: 70
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_5
sl(2)-module decomposition of the ambient Lie algebra: V10ψ+V8ψ+V6ψ+V4ψ+V2ψ
Below is one possible realization of the sl(2) subalgebra.
h=5h5+8h4+9h3+8h2+5h1
e=5/17g5+4/5g4+9/5g3+4g2+5g1
The polynomial system that corresponds to finding the h, e, f triple:
x1x65 x2x78 x3x89 x4x98 x5x105 


h-characteristic: (2, 2, 0, 2, 2)
Length of the weight dual to h: 40
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_4
sl(2)-module decomposition of the ambient Lie algebra: V8ψ+V6ψ+3V4ψ+V2ψ+V0
Below is one possible realization of the sl(2) subalgebra.
h=4h5+6h4+6h3+6h2+4h1
e=3g7+2/5g5+6/5g4+4g1
The polynomial system that corresponds to finding the h, e, f triple:
x1x54 x2x66 x2x66 x3x76 x4x84 


h-characteristic: (2, 0, 2, 0, 2)
Length of the weight dual to h: 22
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_3+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: V6ψ+3V4ψ+4V2ψ+V0
Below is one possible realization of the sl(2) subalgebra.
h=3h5+4h4+5h3+4h2+3h1
e=2g8+1/10g7+3g6+3/5g5
The polynomial system that corresponds to finding the h, e, f triple:
x1x53 x4x8+x1x54 x4x8+x2x65 x2x64 x3x73 


h-characteristic: (2, 1, 0, 1, 2)
Length of the weight dual to h: 20
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_3
sl(2)-module decomposition of the ambient Lie algebra: V6ψ+V4ψ+4V3ψ+V2ψ+4V0
Below is one possible realization of the sl(2) subalgebra.
h=3h5+4h4+4h3+4h2+3h1
e=2g11+3/5g5+3g1
The polynomial system that corresponds to finding the h, e, f triple:
x1x43 x2x54 x2x54 x2x54 x3x63 


h-characteristic: (0, 2, 0, 2, 0)
Length of the weight dual to h: 16
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: 2A^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: 4V4ψ+4V2ψ+3V0
Below is one possible realization of the sl(2) subalgebra.
h=2h5+4h4+4h3+4h2+2h1
e=2g10+g9+1/5g8+2/5g2
The polynomial system that corresponds to finding the h, e, f triple:
x1x52 x3x7+x1x54 x4x8+x1x54 x4x8+x2x64 x2x62 


h-characteristic: (1, 1, 0, 1, 1)
Length of the weight dual to h: 10
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_2+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: V4ψ+2V3ψ+4V2ψ+4Vψ+2V0
Below is one possible realization of the sl(2) subalgebra.
h=2h5+3h4+3h3+3h2+2h1
e=1/5g11+2g10+g9
The polynomial system that corresponds to finding the h, e, f triple:
x1x42 x3x6+x1x43 x3x6+x1x43 x3x6+x2x53 x2x52 


h-characteristic: (2, 0, 0, 0, 2)
Length of the weight dual to h: 8
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: V4ψ+7V2ψ+9V0
Below is one possible realization of the sl(2) subalgebra.
h=2h5+2h4+2h3+2h2+2h1
e=2g13+g5
The polynomial system that corresponds to finding the h, e, f triple:
x1x32 x1x32 x1x32 x1x32 x2x42 


h-characteristic: (0, 0, 2, 0, 0)
Length of the weight dual to h: 6
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: 3A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: 9V2ψ+8V0
Below is one possible realization of the sl(2) subalgebra.
h=h5+2h4+3h3+2h2+h1
e=g15+1/2g11+1/5g3
The polynomial system that corresponds to finding the h, e, f triple:
x1x41 x2x5+x1x42 x3x6+x2x5+x1x43 x2x5+x1x42 x1x41 


h-characteristic: (0, 1, 0, 1, 0)
Length of the weight dual to h: 4
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: 2A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: 4V2ψ+8Vψ+7V0
Below is one possible realization of the sl(2) subalgebra.
h=h5+2h4+2h3+2h2+h1
e=g15+1/2g11
The polynomial system that corresponds to finding the h, e, f triple:
x1x31 x2x4+x1x32 x2x4+x1x32 x2x4+x1x32 x1x31 


h-characteristic: (1, 0, 0, 0, 1)
Length of the weight dual to h: 2
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: V2ψ+8Vψ+16V0
Below is one possible realization of the sl(2) subalgebra.
h=h5+h4+h3+h2+h1
e=g15
The polynomial system that corresponds to finding the h, e, f triple:
x1x21 x1x21 x1x21 x1x21 x1x21